BUS 173 Applied Statistics

Lecture 10-14

Prepared By: Mohammad Kamrul Arefin Lecturer, School of Business, North South University

Measures of Relationships Between Variables

✓ Covariance: Covariance is a measure of the linear relationship between two variables. A positive value indicates a direct or increasing linear relationship and a negative value indicates a decreasing linear relationship.

A sample covariance is

$$Cov(x, y) = S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n - 1} = \frac{1}{n - 1} \left[\sum_{i=1}^{n} xy_i - \frac{\sum_{i=1}^{n} x\sum_{i=1}^{n} y_i}{n}\right]$$

✓ **Correlation**: If the change in one variable effects a change in the other variable, the variables are said to be correlated.

✓ If the increase (decrease) in one variable results in the corresponding increase in the other i.e. if the changes are in the same direction, the variables are positively correlated. e.g. Height and weight of a group of people.

✓ If the increase (decrease) in one variable results in the corresponding decrease (increase) in the others, i.e. if the changes are in the opposite direction, the variables are negatively correlated. e.g. Volume and pressure of perfect gas.

Correlation Coefficient $(x, y) = r_{xy} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$ $= \frac{\sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}}{\sqrt{\{\sum x_i^2 - \frac{(\sum x_i)^2}{n}\}\{\sum y_i^2 - \frac{(\sum y_i)^2}{n}\}}}$

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

✓ Correlation:

✓ The correlation coefficient ranges from -1 to +1.

✓ When r = 0 there is no linear relationship between x and y but not necessarily a lack of relationship.

 \checkmark The closer "r" is to +1, represents strong positive relationship.

✓ The closer "r" is to -1, represents strong negative relationship.

 \checkmark Correlation indicates whether there is any relation between the variables and correlation coefficient measures the extent of relationship between them.

Regression: Regression measures the probable movement of one variable in term of the other. Therefore regression is used for prediction or forecasting purpose.

✓ Suppose the movement of the variable Y is dependent on the movement of X variable. Hence Y is dependent variable and X is independent variable. Let the regression line of Y on X be

 $\hat{y} = \beta_1 + \beta_2 x + u_i$ where β_1 =intercept; β_2 = slope

$$\beta_{2} = \frac{\sum x_{i} y_{i} - \frac{(\sum x_{i})(\sum y_{i})}{n}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} = \frac{S_{xy}}{S_{xx}}$$

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

 $\beta_1 = \overline{Y} - b\overline{X}$

Example

The table shows the math achievement test scores for a random sample of n = 10 college freshmen, along with their final calculus grades.

Student	1	2	3	4	5	6	7	8	9	10	
Math test, x	39	43	21	64	57	47	28	75	34	52	
Calculus grade, y	65	78	52	82	92	89	73	98	56	75	
Use your calculator to fi the sums and s of squares.	$\sum_{\sum \\ \overline{x}}$	$x = x^{2}$ $xy = 4$	= 46 = 2 = 3 •6	50 363 685 <u>y</u>	Σ 34 54 ⁷ = 7	Ly = Σy 76	= 76 v ² =	5982	16		

Example

$$\begin{aligned} S_{xx} &= 23634 - \frac{(460)^2}{10} = 2474 \\ S_{yy} &= 59816 - \frac{(760)^2}{10} = 2056 \\ S_{xy} &= 36854 - \frac{(460)(760)}{10} = 1894 \\ b &= \frac{1894}{2474} = .76556 \text{ and } a = 76 - .76556(46) = 40.78 \\ \text{Bestfitting line: } \hat{y} &= 40.78 + .77x \end{aligned}$$

Goodness of fit:

- The overall goodness of fit of the regression is measured by the coefficient of determination, r².
- It explains what proportion of variation in the dependent variable is explained by the explanatory variable.
- $0 \le r^2 \le 1$: the closer it is to 1, the better is the fit.
- e.g. if $r^2 = 0.92$, it means that 92% of variation in Y is explained by X.
- In the case of multivariate regression, the coefficient of determination is denoted by R².

$$r^{2} = \frac{\sum (\hat{y}_{i} - y)^{2}}{\sum (y_{i} - \overline{y})^{2}} = \frac{SSR}{TSS} = 1 - \frac{SSE}{TSS} = \frac{s_{xy}^{2}}{s_{xx}s_{yy}},$$

$$y_i$$
 = actual value, \hat{y}_i = predicted value

The Analysis of Variance

TSS= Total Sum of Squares = $\sum (y_i - \overline{y})^2 = S_{yy} = SSR + SSE$ SSR= Sum of Squares of Regression= $\sum (\hat{y}_i - \overline{y})^2 = \frac{s_{xy}^2}{s_{xx}}$ =Variation in y explained by regression SSE= Sum of Squares of Error = $\sum \hat{u}_i^2 = \sum (y_i - \hat{y}_i)^2$, $= S_{yy} - \frac{s_{xy}^2}{s_{xx}}$ = unexplained variation in y y_i = actual value, \hat{y}_i = predicted value

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

9

The Analysis of Variance

We calculate

$$SSR = \frac{(S_{xy})^2}{S_{xx}} = \frac{1894^2}{2474}$$
$$= 1449.9741$$
$$SSE = Total SS-SSR$$
$$= S_{yy} - \frac{(S_{xy})^2}{S_{xx}}$$
$$= 2056 - 1449.9741$$
$$= 606.0259$$

he ANO	/A Tab	е		
otal <i>df</i> = <mark>n -1</mark>		Me	an Squar	es
legression <i>df</i> =	K=1		MSR :	= SSR/(1)
rror $df = \frac{n - k}{k}$	-1 = n - 2		MSE =	= SSE/(<i>n</i> -2)
Source	df	SS	MS	F
Regression	K=1	SSR	SSR/(1)	- MSR/MSE
Error	(n -k-1)=n-2	SSE	SSE/(<i>n</i> -2)	1/(n-2) df
Total	n -1	Total SS		
Mohammad Kamrul Arefin,	Lecturer, Sch	ool of Business, N	North South Univers	sity
bo Colou		blow		
ne calcu	ius Pro	DIEII		
	$\mathbf{C} \rightarrow 2$ 100	A 2		
$SSR = \frac{(}{}$	$\frac{S_{xy}}{S_{xx}} = \frac{189}{247}$	$\frac{4^{2}}{74} = 144$	49.9741	

Source	df	SS	MS	F
Regression	1	1449.9741	1449.9741	19.14
Error	8	606.0259	75.7532	
Total	9	2056.0000		

= 2056 - 1449.9741 = 606.0259

Estimation and Prediction

To estimate the average value of y when $x = x_0$:

$$\hat{y} \pm t_{\alpha/2} \sqrt{MSE\left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}$$

To predict particular value of y when $x = x_0$:

$$\hat{y} \pm t_{\alpha/2} \sqrt{MSE\left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}$$

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

The Calculus Problem

• Estimate the average calculus grade for students whose achievement score is 50 with a 95% confidence interval.

Calculate
$$\hat{y} = 40.78424 + .76556(50) = 79.06$$

 $\hat{y} \pm 2.306 \sqrt{75.7532} \left(\frac{1}{10} + \frac{(50 - 46)^2}{2474} \right)$
79.06 ± 6.55 or 72.51 to 85.61.

The Calculus Problem

• Estimate the calculus grade for **a particular student** whose achievement score is 50 with a 95% confidence interval.

Two variable regression: Interval estimation and Hypothesis Testing

To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β_2 is zero. Two tests are commonly used. Both require an estimate of σ^2 , the variance of u_i in the regression model.

Suppose that an OLS regression of consumption (Y_i) against a constant and income (X_i) : $Y_i = \beta_1 + \beta_2 X_{2i} + u_i$ yields the sample regres. line:

 $\hat{Y}_i = 24.45 + 0.5091X_i$

24.25, 0.5091 are single (point) estimates of the unknown β_1 , β_2 , respectively.

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

Two variable regression: Interval estimation and Hypothesis Testing

The simple linear regression model is

$$\hat{y} = \beta_1 + \beta_2 x + u_i$$
 where β_1 =intercept; β_2 = slope

If x and y are linearly related, we must have $\beta_2 \neq 0$. The purpose of the t test is to see whether we can conclude that $\beta_2 \neq 0$. We will use the sample data to test the following hypotheses about the parameter $\beta_2 \neq 0$.

 $H_0: \beta_2 = 0$ $H_A: \beta_2 \neq 0$

If H_0 is rejected, we will conclude that $\beta_2 \neq 0$ and that a statistically significant relationship exists between the two variables. However, if H_0 cannot be rejected, we will have insufficient evidence to conclude that a significant relationship exists.

Two variable regression: Interval estimation and Hypothesis Testing

K= no. of explanatory variables in the model

Confidence Interval for β_2

$$=\hat{\beta}_{2}\pm t_{\alpha/2}(\sigma_{\hat{\beta}_{2}})=\hat{\beta}_{2}\pm t_{\alpha/2}(\sqrt{\frac{MSE}{S_{xx}}})$$

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

Exercise: Confidence Interval Calculation

If
$$\hat{\beta}_2 = 0.5091$$
, $\sigma_{\hat{\beta}_2} = 0.0357$, degrees of freedom=8, $\alpha = 5\%$
Confidence Interval for β_2

$$= \hat{\beta}_2 \pm t_{\alpha/2}(\sigma_{\hat{\beta}_2}) = 0.5091 \pm 2.306 \times 0.0357 = 0.4268 \text{ to } 0.5914$$

A null hypothesis that is commonly tested is H_0 : $\beta_2=0$, i.e. that the slope coefficient is zero, indicating no relationship between X and Y.

Reject H₀

Values of β_2 lying in this interval are plausible under H₀ with 100(1- α)% confidence: Do not reject H₀

Reject H₀

 $\hat{\beta}_2 - t_{a/2}\hat{\sigma}_{\hat{\beta}_2}$

 $\hat{\beta}_2 + t_{a/2}\hat{\sigma}_{\hat{\beta}_2}$

Mohammad Kamrul Arefin,

95% Confidence Interval for $\beta_2 = 0.4268$ to 0.5914 Example: If H₀: β_2 =0.3 against H₁: $\beta_2 \neq 0.3$

We can reject null with 95% confidence, since 0.3 (i.e. β_2 under the null) lies outside the 95% confidence interval.

t-test decision rules:

Type of	H ₀	H ₁	Reject H ₀ if
hypothesis			
Two-tail	$\beta_2 = \beta_2^*$	$\beta_2 \neq \beta_2^*$	$ t > t_{(n-k),\alpha/2}$
Right-tail	$\beta_2 \leq \beta_2^*$	$\beta_2 > \beta_2^*$	$t > t_{(n-k),\alpha}$
Left-tail	$\beta_2 \geq \beta_2^*$	$\beta_2 < \beta_2^*$	t < -t _{(n-k),α}

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

21

Reject the null hypothesis only if the estimated t-statistic falls in one of the rejection regions (critical regions) depicted above as shaded area

Example

The table shows student population and quarterly sales data for 10 armand's pizza parlours.

Pizza Parlours	1	2	3	4	5	6	7	8	9	10
St. Population (,000) (x)	2	6	8	8	12	16	20	20	22	26
Quarterly Sales, (,000) (y)	58	105	88	118	117	137	157	169	149	202

Use your calculator to find the sums and sums of squares. $\sum x = 140; \sum x^2 = 2528; \sum xy = 21040$ $\sum y = 1300; \sum y^2 = 184730; \overline{x} = 14; \overline{y} = 130$ Standard deviation of X (*s_x*) = 7.944 Standard deviation of Y (*s_y*) = 41.806

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

$$S_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} = 2528 - \frac{(140)^2}{10} = 568;$$

$$S_{yy} = \sum y^2 - \frac{(\sum y)^2}{n} = 184730 - \frac{(1300)^2}{10} = 15730;$$

$$S_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n} = 21040 - \frac{140x1300}{10} = 2840;$$

$$\hat{\beta}_2 = b = \frac{S_{xy}}{S_{xx}} = \frac{2840}{568} = 5, \ \hat{\beta}_1 = \overline{y} - \beta_2 \overline{x} = 130 - 5x14 = 60$$
The regression model is: $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x = 60 + 5x$
Sum of squares of regression (SSR) $= \frac{S_{xy}^2}{S_{xx}} = \frac{2840^2}{568} = 14200$
Total Sum of Squares (TSS) $= S_{yy} = 15730$
TSS = SSR + SSE
Sum of Squares of Error (SSE) = TSS - SSR = 15730 - 14200 = 1530
Mohammad Kamrul Arefin. Lecturer, School of Business, North South University 29

Total *df* = <u>n -1</u>

Regression	df =	K=1
U		

Error df = n - k - 1 = n - 2

Mean Squares

MSR = SSR/(1)

MSE = SSE/(n-2)

Source	df	SS	MS	F
Reg.	K=1	SSR=14,200	SSR/(1)=14,200	MSR/MSE
Error	(n -k-1)=8	SSE= 1530	SSE/(8)=191.25	=14,200/191.25=74.248 1/(n-2) df=1/8 df
Total	n -1=9	TSS=15,730		

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

Sum of squares of regression (SSR) = $\frac{S_{xy}^2}{S_{xx}} = \frac{2840^2}{568} = 14200$ Total Sum of Squares (TSS) = $S_{yy} = 15730$

$$r^{2} = \frac{SSR}{TSS} x100\% = \frac{14200}{15730} x100\% = 90.27\%$$

90.27% of the variability in sales can be explained by the linear relationship between the size of the student population and sales.

Exercise: Confidence Interval Calculation

If
$$\hat{\beta}_2 = 5$$
, $\sigma_{\hat{\beta}_2} = 0.58$, degrees of freedom=8, $\alpha = 5\%$
Confidence Interval for β_2
 $= \hat{\beta}_2 \pm t_{\alpha/2}(\sigma_{\hat{\beta}_2}) = 5 \pm 2.306 \times 0.58 = 3.66$ to 6.33

A null hypothesis that is commonly tested is H_0 : $\beta_2=0$, i.e. that the slope coefficient is zero, indicating no relationship between X and Y.

95% Confidence Interval for $\beta_2 = 3.66$ to 6.33

Example: If H_0 : $\beta_2=0$ against H_1 : $\beta_2\neq 0$

We can reject null with 95% confidence, since 0 (i.e. β_2 under the null) lies outside the 95% confidence interval. We can conclude that a significant statistical relationship exists between the size of the student population and quarterly sales.

F-test:

An *F* test, based on the *F* probability distribution, can also be used to test for significance in regression. With only one independent variable, the *F* test will provide the same conclusion as the *t* test; that is, if the *t* test indicates $\beta \neq 0$ and hence a significant relationship, the *F* test will also indicate a significant relationship. But with more than one independent variable, only the *F* test can be used to test for an overall significant relationship.

95% Confidence Interval for $\beta_2 = 3.66$ to 6.33

Example: If H_0 : $\beta_2=0$ against H_1 : $\beta_2\neq 0$

F-statistic= MSR/MSE =14,200/191.25=74.248; 1/(n-2) df=1/8 df

If F-statistic> F_{α} [k/(n-k-1) df: Reject the Null H₀

Here, α =5% = 0.05; F_{0.5}, 1/8 df =5.32 i.e. F-statistic=74.248 > F_{0.5}, 1/8 df =5.32

Reject the null. Therefore from the F-test also we can conclude that there is a statistically significant relationship exists between size of the student population and quarterly sales or the regression model is statistically significant at 5% level.

Multiple Regression Model:

- The two-variable regression model is often inadequate in practise: e.g. consumption is affected not only by income but also by wealth.
- The two-variable model needs to be extended by adding more explanatory variables. The simplest multiple regression model is the three-variable regression (with two explanatory variables X₂, X₃):

$$Yi = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

Y: dependent variable, u: stochastic error term

- β1: intercept term, it shows the average effect on Y of all the variables excluded from the model (or the average value of Y when: X2i = X3i = 0).
- β 2, β 3: partial regression (or slope) coefficients

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

37

Multiple Regression Model:

- $\beta 2 = \partial Y / \partial X 2$: measures the change in the mean value of Y per unit change of X2, holding X3 constant (i.e. the 'direct' effect of $\Delta X2$ on E(Y), net of any influence that X3 may have).
- β3 = ∂Y/ ∂X3: measures the change in the mean value of Y per unit change of X3, holding X2 constant (i.e. the 'direct' effect of ΔX3 on E(Y), net of any influence that X2 may have).
 Goodness of fit: the multiple coefficient of determination R² and the

Goodness of fit: the multiple coefficient of determination R² and the adjusted R²

- The overall goodness of fit of the regression is measured by the R².
- It explains what proportion of variation in the dependent variable (Y) is explained by the explanatory variables (X₂ and X₃) *jointly*: there is little point in trying to allocate the R² value to its constituent regressors.
- 0 ≤ R² ≤ 1, If R²=1, the fitted regression line explains 100% of the variation in Y.
- If R²=0, the model doesn't explain any of the variation in Y.
- Typically, R² lies between these extreme values.
- The fit of the model is said to be 'better' the closer is R² to 1.

Goodness of fit: the multiple coefficient of determination R² and the adjusted R²

- An important property of R² is that it is a non-decreasing function of the number of explanatory variables present in the model.
- As the number of regressors increases, R² invariably increases and never decreases (i.e. an additional X variable will never decrease R²). This is due to the fact that as the number of X variables increases, the SSE is likely to decrease.
- **Implication**: when comparing two regression models with the same dependent variable (Y) but differing number of X variables, one should be very suspicious of choosing the model with the highest R².
- To compare two R² terms, we must take into account the number of variables present in the model. This can be done by using the adjusted R²: n-1

Adjusted R² =
$$1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

• where k is the number of parameters in the model (including the intercept term), n is the sample size.

```
Mohammad Kamrul Arefin,
```

Lecturer, School of Business, North South University

- The term adjusted means adjusted for the degrees of freedom associated with the sum of squares terms.
- For k>1: Adjusted R² < R², implying that as the number of X variables increases the adjusted R² increases by less than the un-adjasted R².
- The adjusted R² can be negative, although R² is necessarily non-negative.
- It is good practice to use the adjusted R² instead of the R² because R² tends to give an overly optimistic picture of the fit of the regression, particularly when the number of explanatory variables is not very small compared with the number of observations.

When comparing two models on the basis of R² (whether adjusted or not) the sample size and the dependent variable must be the same.

- Sometimes researchers choose among alternative models solely on the basis of maximizing the adjusted R². This can be dangerous, since it's not unusual to obtain a very high adjusted R² but find that some of the regression coefficients are either statistically insignificant or have signs that are contrary to a priori expectations (e.g. negative income coefficient in consumption model!).
- Also, sometimes we can obtain low adjusted R² without meaning that the model is necessarily bad (e.g. in stock returns regressions adjusted R² can be less than 0.1).

Mohammad Kamrul Arefin, Lecturer, School of Business, North South University 41
Example: Child Mortality Regression Model
We use OLS to regress child mortality (C) on per
capita GNP (PGNP) and the female literacy rate
(FLR) for a sample of 64 countries (n=64).

$$C_i = \beta_1 + \beta_2 PGNP_i + \beta_3 FLR_i + u_i$$
 (k=3)
The results are:
 $\hat{C}_i = 263.6416 - 0.056PGNP_i - 2.2316FLR_i$
 $se = (11.5932)$ (0.0019) (0.2099)
Use the t-test of significance to test at α =5%:

Example:

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

Note that most econometric packages (including Microfit) automatically report the t-statistic (T-ratio) for the null hypothesis: $\beta_i = 0$ (j=1..k).

Ordinary Least Squares Estimation

Dependent variable is DLS

132 observations used for estimation from 1873 to 2004

Regressor CON	Coefficient 0.030335	Standard Error 0.016211	T-Ratio[Prob] 1.8713[.064]				
DLS(-1)	0.049932	0.090173	0.55374[.581]				
DLP	0.44044	0.25890	1.7012[.091]				

The probabilities indicate that the null hypothesis of statistical insignificance cannot be rejected for all coefficients at the 1% and 5% level of significance. The null can be rejected at the 10% level of significance for the CON and DLP coefs.

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

Given the k-variable regression model:

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{k}X_{ki} + u_{i}$$

To test the hypothesis:

$$H_0: \beta_3 = \beta_4 \text{ or } \beta_3 - \beta_4 = 0$$

$$H_1: \beta_3 \neq \beta_4 \text{ or } \beta_3 - \beta_4 \neq 0$$

we must compute the test statistic:

$$=\frac{(\hat{\beta}_{3}-\hat{\beta}_{4})-(\beta_{3}-\beta_{4})}{\hat{\sigma}_{(\hat{\beta}_{3}-\hat{\beta}_{4})}}$$

Mohammad Kamrul Arefin,

t

Lecturer, School of Business, North South University

where:
$$\hat{\sigma}_{(\hat{\beta}_{3}-\hat{\beta}_{4})} = \sqrt{\hat{\sigma}_{\hat{\beta}_{3}}^{2} + \hat{\sigma}_{\hat{\beta}_{4}}^{2} - 2Cov(\hat{\beta}_{3}, \hat{\beta}_{4})}$$

If $|t| > t_{(n-k), \alpha/2}$, reject H₀ at the d% level.
Example: Cubic Cost Function
Use OLS to regress Total Cost (Y) on Output (X),
Output Squared (X²) and Output Cubed (X³) using
a sample of 10 obs (n=10). Results are:
 $\hat{Y}_{i} = 141.7667 + 63.477X_{i} - 12.9615X_{i}^{2} + 0.9396X_{i}^{3}$ (k=4)
 $se = (6.3753) (4.7786) (0.9857) (0.0591)$
 $Cov(\hat{\beta}_{3}, \hat{\beta}_{4}) = -0.0576$ ⁹
Mommad Kamul Arefit.
Letter: School of Business, North South University 47
H₁: $\beta_{3} = \beta_{4}$ (equal coefficient for X² and X³ term)
H₁: $\beta_{3} \neq \beta_{4}$
 $t = \frac{(\hat{\beta}_{3} - \hat{\beta}_{4}) - (\beta_{3} - \beta_{4})}{\hat{\sigma}_{(\hat{\beta}_{3} - \hat{\beta}_{4})}} = \frac{(-12.9615 - 0.9396) - 0}{\sqrt{(0.9857)^{2} + (0.0591)^{2} - 2(-0.0576)}}$
 $= -13.313$
Since $|t| = 13.313 > t_{(10.4),0.05/2} = 2.447$ reject H₀
at the 5% level of significance.

3. Joint Hypothesis testing: F-test

Given the k-variable regression model:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_k X_{ki} + u_i$$

To test joint parameter significance, form:

 $H_0: \beta_2 = \beta_3 = ... = \beta_k = 0$ (i.e. all the <u>slope coefficients</u> are simultaneously equal to zero).

H₁: Not all slope coefficients are simultaneously zero

Lecturer, School of Business, North South University

F-statistic =
$$\frac{MSR}{MSE} = \frac{\frac{SSR}{K}}{\frac{SSE}{n-k-1}} = \frac{\frac{R^2}{K}}{\frac{1-R^2}{n-k-1}}$$

If F-statistic> F_{α} [k/(n-k-1) df: Reject the Null H₀ at α % level of significance

We should point out that it is possible to reject (not reject), via the *t*-test, the hypothesis that a particular slope coefficient is zero and yet not reject (reject) via the *F*-test the joint hypothesis that all slope coefficients are zero.

In other words: testing a series of single (individual) hypotheses is *not* equivalent to testing those hypotheses jointly.

Mohammad Kamrul Arefin,

Mohammad Kamrul Arefin,

 Dependent varial	D4 ******						
Regressor CON DLS(-1) DLP	Coefficient 0.030335 0.049932 0.44044	Standard Error 0.016211 0.090173 0.25890	T-Ratio[Prob] 1.8713[.064] 0.55374[.581] 1.7012[.091]				
		F-stat. F(2, 129) 1.9764[.143]				
The value of the F-statistic is 1.9764							
If F-statistic=1.9764> F_{α} [k/(n-k-1 df)= $F_{0.05}$ [2/(129 df)=3.04 : Reject the Null H ₀ at 5 % level of significance							
We can see that F-statistic=1.9764< F _{0.05} [2/(129 df)=3.04							
Thus at 5 % le	vel of signific	ance we fail to reje	Sect the H ₀ : $\beta_2 = \beta_3 = 0$				
Mohammad Kamrul A	refin, Le	cturer, School of Business, Nor	th South University	51			

Regression versus Causation

• A statistical relationship in itself (however strong) can never establish causal connection. To attribute causality, one must appeal to a priori or theoretical considerations.

• For example, there is no statistical reason to assume that rainfall doesn't depend on crop yield. The fact we treat crop yield as the Y variable and rainfall as the X variable is due to common sense: we cannot control rainfall by varying crop yield.

Differences between regression and correlation:

- In correlation analysis we treat any (two) variables symmetrically; there is no distinction between dependent and explanatory variables.

-In regression analysis we treat the dependent variable (Y) as stochastic or random and the independent (X) as fixed or non-stochastic.

Two Variable Regression Model: Estimation

The Method of Ordinary Least Squares (OLS)

• The OLS method is used to estimate the non-directly observable population regression function (PRF) on the basis of the sample regression function.

• The OLS method is extensively used in regression analysis because it is intuitively appealing and mathematically simpler than alternative estimation methods (e.g. maximum likelihood estimation).

• The OLS was developed first by C.F. Gauss in 1821.

Least Squares Criterion: specify the SRF (by choosing values for the estimators) so that it is as close as possible to the actual PRF, by minimising the sum of squared residuals (RSS):

$$\min_{\beta_1 \beta_2} \sum_{i=1}^{n} \hat{u}_i^2 = \min_{\beta_1 \beta_2} SSE$$

where, $\hat{u}_i = y_i - \hat{y}_i$ is the residual or error term

Assumptions underlying the OLS method

The Gaussian or Classical Linear Regression Model (CLRM) makes 10 assumptions:

- 1. Linearity: the regression model is linear in the parameters
- 2. X non-stochastic: Values taken by the regressor X are considered fixed in repeated samples.
- **3. Zero mean value of error term**: Given the value of X, the conditional mean of the random error term ui is zero: $E(u_i|X_i) = 0$.
- **4.** Homoskedasticity: Given the value of X, the variance of u_i is the same for all observations: $Var(u_i|X_i)=\sigma^2$
- **5.** No autocorrelation (or no serial correlation): Given any two values of X: X_i and X_j ($i \neq j$), the correlation between any two error terms u_i and u_j is zero: Cov(u_i , $u_j | X_i$, X_j)=0; Thus: we don't worry about the other influences that might act on Y as a result of possible intercorrelations among the u's.

Mohammad Kamrul Arefin,

Lecturer, School of Business, North South University

- **6.** Zero covariance between ui and Xi : Cov(u_i, X_i)=0 ; Thus: the error term and the explanatory variable are uncorrelated, so that it possible to assess their individual effects on Y.
- 7. The number of observations (n) must be greater than the number of explanatory variables. Thus: if $Yi = \beta_1 + \beta 2X_i + u_i$, we need at least two observations on Y and X to estimate the 2 unknowns β_1 , β_2 .
- 8. Variability in X values: the X values in a given sample must not all be the same.
- 9. The regression model must be correctly specified.
- 10.There is no multicollinearity: there is no perfect (exact) linear relationship among the X's. This assumption applies to the case where there is more than one explanatory variable, e.g. : Yi = β 1 + β 2X2i + β 3X3i + ui

