BUS 172

 Descriptive Statistics

 Descriptive Statistics}

Lecture 17,18, \& 19

Example: Suppose the population proportion of managers who participated in the training program is $\mathrm{P}=0.60$. With a simple random sample of size 30 , the personnel director wants to know the probability of obtaining a value of sample proportion that is within 0.05 of the population proportion; That is, what is the probability of obtaining a sample with a sample proportion between 0.55 and 0.65 ?

$$
\begin{aligned}
& n=30 \\
& p=P()=0.60 \\
& q=0.40 \\
& n p=18 n q=12
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(\frac{0.55-0.60}{\sqrt{\frac{0.60(0.40)}{30}}}<z<\frac{0.65-0.60}{\sqrt{\frac{0.60(0.40)}{30}}}\right)=P(-0.56<z<0.56) \\
& =0.7123-0.2877=0.4246
\end{aligned}
$$

Interval Estimation
\checkmark A point estimator is a sample statistic used to estimate a population parameter. The sample mean \bar{X} is a point estimator of the population mean μ and the sample proportion \hat{p} is a point estimator of the population proportion P .
\checkmark Because a point estimator cannot be expected to provide the exact value of the population parameter, an interval estimate is often computed by adding and subtracting a value, called the margin of error, to the point estimate.
\checkmark The general form of an interval estimate is as follows:

Point estimate \pm Margin of error

\checkmark The purpose of an interval estimate is to provide information about how close the point estimate, provided by the sample, is to the value of the population parameter.

Interval Estimation

\checkmark Using the standard normal probability table, we find that 95\% of the values of any normally distributed random variable are within 1.96 standard deviations of the mean.
\checkmark Thus, when the sampling distribution of \bar{X} is normally distributed, 95% of the values must be within $\pm 1.96 \sigma_{\bar{x}}^{-}$of the mean μ.
\checkmark Thus, when the sampling distribution of \hat{p} is normally distributed, 95% of the values must be within $\pm 1.96 \sigma_{\hat{p}}$ of the mean P .

Point estimator of population mean $\mu: \bar{x}$ Margin of error $(n \geq 30): \pm 1.96 \frac{s}{\sqrt{n}}$
-For a binomial population,
Point estimator of population proportion $p: \hat{p}=x / n$ Margin of error $(n \geq 30): \pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}$

Example: A homeowner randomly samples 64 homes similar to her own and finds that the average selling price is $\$ 252,000$ with a standard deviation of $\$ 15,000$. Estimate the average selling price for all similar homes in the city.

Point estimatorof $\mu: \bar{x}=252,000$

Margin of error: $\pm 1.96 \frac{s}{\sqrt{n}}= \pm 1.96 \frac{15,000}{\sqrt{64}}= \pm 3675$
95\% confidence interval:
$\bar{x} \pm 1.96 \sigma_{\bar{x}}^{-}=\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}=252000 \pm 1.96 \frac{15000}{\sqrt{64}}=252000 \pm 3675$

Example: A quality control technician wants to estimate the proportion of soda cans that are underfilled. He randomly samples 200 cans of soda and finds 10 underfilled cans.
$n=200 \quad p=$ proportion of underfilled cans Point estimator of $p: \hat{p}=x / n=10 / 200=.05$ Margin of error: $\pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}= \pm 1.96 \sqrt{\frac{(.05)(.95)}{200}}= \pm .03$ 95\% confidence interval:

$$
\hat{p} \pm 1.96 \sigma_{\hat{p}}=\hat{p} \pm 1.96 \sqrt{\frac{\hat{p} q}{n}}=0.05 \pm 1.96 \sqrt{\frac{(0.05)(0.95)}{200}}=0.05 \pm 0.03
$$

Confidence interval for population mean:

$$
\bar{x} \pm z_{\alpha / 2} \sigma_{\bar{x}}=\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Confidence interval for Population Proportion:

$$
\hat{p} \pm z_{\alpha / 2} \sigma_{\hat{p}}=\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

Where,
$1-\alpha=$ confidence coefficient
$\alpha=$ level of significance
$\mathrm{Z}_{\alpha / 2}=\mathrm{Z}$ value providing an area of $\alpha / 2$ in the negative tail
of the standard normal prob. distribution
95% confidence interval= confidence coefficient, $1-\alpha$ $=0.95$

$$
\left|z_{\alpha / 2}\right|=\left|z_{0.05 / 2}\right|=\left|z_{0.025}\right|=|-1.96|=1.96
$$

i.e. $a=0.05$. Hence

Example: A random sample of $n=50$ males showed a mean average daily intake of dairy products equal to 756 grams with a standard deviation of 35 grams. Find a 95\% confidence interval for the population average μ.
Solution:95\% confidence interval= confidence coefficient, $1-\alpha=0.95$ i.e. $\alpha=0.05$. Hence

$$
\begin{aligned}
& \left|z_{\alpha / 2}\right|=\left|z_{0.05 / 2}\right|=\left|z_{0.025}\right|=|-1.96|=1.96 \\
& \bar{x} \pm z_{\alpha / 2} \sigma_{\bar{x}}=\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \\
& \bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} \Rightarrow 756 \pm 1.96 \frac{35}{\sqrt{50}} \Rightarrow 756 \pm 9.70 \\
& \text { or } 746.30<\mu<765.70 \text { grams. }
\end{aligned}
$$

Example: A random sample of $n=50$ males showed a mean average daily intake of dairy products equal to 756 grams with a standard deviation of 35 grams. Find a 99\% confidence interval for the population average μ.
Solution:99\% confidence interval= confidence coefficient, $1-\alpha=0.99$ i.e. $\alpha=0.01$. Hence

$$
\begin{aligned}
& \quad\left|z_{\alpha / 2}\right|=\left|z_{0.01 / 2}\right|=\left|z_{0.005}\right|=|-2.575|=2.575 \\
& \bar{x} \pm z_{\alpha / 2} \sigma_{\bar{x}}=\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \\
& \bar{x} \pm 2.575 \frac{\sigma}{\sqrt{n}} \Rightarrow 756 \pm 2.575 \frac{35}{\sqrt{50}} \Rightarrow 756 \pm 12.74 \\
& \text { or } 746.26<\mu<768.74 \text { grams. }
\end{aligned}
$$

Example: Of a random sample of $\mathrm{n}=150$ college students, 104 of the students said that they had played on a soccer team during their K-12 years. Estimate the proportion of college students who played soccer in their youth with a 98% confidence interval.

Solution:98\% confidence interval= confidence coefficient, $1-\alpha=0.98$ i.e. $\alpha=0.02$. Hence

$$
\begin{gathered}
\left|z_{\alpha / 2}\right|=\left|z_{0.002 / 2}\right|=\left|z_{0.01}\right|=|-2.33|=2.33 \\
\hat{p} \pm z_{\alpha / 2} \sigma_{\hat{p}}=\hat{p} \pm z_{\alpha / 2} \left\lvert\, \frac{\sqrt{\hat{p}} \boldsymbol{q}}{n}\right. \\
0.69 \pm 2.33 \sqrt{\frac{(0.69)(0.31)}{150}} \Rightarrow 0.69 \pm 0.0879
\end{gathered}
$$

$$
\text { or } 0.602<P<0.778 \quad 60.2 \%<P<77.8 \%
$$

Confidence interval for population mean(σ unknown)

$$
\bar{x} \pm t_{\alpha / 2} \quad \sigma_{(n-1) D, F}^{\bar{x}}=\bar{x} \pm t_{\alpha / 2} \frac{s}{(n-1) p, F}
$$

Where,
$1-\alpha=$ confidence coefficient, $\alpha=$ level of significance $\mathrm{t}_{\alpha / 2}=\mathrm{t}$ value providing an area of $\alpha / 2$ in t prob. distribution at $(\mathrm{n}-1)$ degrees of freedom. As the number of degrees of freedom increases, the difference between the t distribution and the standard normal (z) distribution becomes smaller and smaller.
95% confidence interval= confidence coefficient, $1-\alpha$
$=0.95 \quad t_{\alpha / 2}=t_{0.05 / 2} \quad=t_{0.025} \quad=2.069$
i.e. $\alpha=0.05$. Hence

Degrees of fredom refer to the number of independent picecs of information that go into the computation of $\sum\left(x_{i}-\bar{x}\right)^{2}$.The npicees of information involved incomputing $\sum\left(x_{i}-\bar{x}\right)^{2}$ are as follows: $x_{1}-\bar{x}_{,} x_{2}-x_{2}, \ldots, x_{n}-\bar{x}$. In Section 3.2 we indicated that $\Sigma\left(x_{i}-\bar{x}\right)=0$ for any data set. Thus, only $n-1$ of the x_{i} - \bar{y} values are independent; that is, if we known -1 of the values, the remaining value can be determined exactly by using the condition that the sum of the $x_{i}-\bar{x}$ values must be 0 . Thus, $n-1$ is the number of degrees of freedom associated with $\sum\left(x_{i}-\bar{x}\right)^{2}$ and hence the number of degrees of freedom for the t distribution in expression (8.2).

Example: For a random sample of seven-automobiles radar indicated the following speeds, in miles per hour:

79	73	-68	77	86	71	69
$\mathrm{~S}=6.4$,	$\bar{x}=74.71$					

Assuming a normal probability distribution for population, find the margin of error and interval at 95% confidence interval for the mean speed of all automobiles.
Solution:95\% confidence interval= confidence coefficient, 1- $\alpha=0.95$ i.e. $\alpha=0.05$. Hence

$$
\begin{aligned}
& t_{\alpha / / 2}=t_{0.05 / 2}=t_{(n-025) D . F}=2.306 \\
& \bar{x} \pm t_{\alpha / 2} \sigma_{(n-1) D \cdot F} \sigma_{\bar{x}}^{-x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}
\end{aligned}
$$

$=74.71 \pm 2.306 \frac{6.4}{\sqrt{7}}=74.71 \pm 5.58$
or $69.13<\mu<80.29$ miles per hour.

